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. . . . . .

Motivations and Background

Mathematicians enjoy resolving singularities, because many nice properties
and theorems only applies to nonsingular things. So comes the desire to
classify singularities whenever we can.

Resolution of a singularity x ∈ X means finding a proper birational map
f : Y → X s.t. Y is nonsingular and f : Y \f −1(x) → X\x is an
isomorphism. So x is mapped by curves (Riemann surfaces) on the
nonsingular surface Y .
.
Theorem (Abhyankar...)
..
......The singularities of any surface can be resolved.
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. . . . . .

Motivations and Background

.
Theorem (Resolution of imbedded curve singularities, SH IV(4.1.1))
..

......

For any irreducible curve C ⊂ X a nonsingular surface, there exists
another surface Y and a regular map f : Y → X s.t. f is a composite of
blow-ups and the birational transform of C is nonsingular on Y .

.
Theorem (HS V(5.5))
..

......

Let T : X → X ′ be a birational transform of surfaces. Then T can be
factored into a finite sequence of monoidal tranformations (blow-ups at a
point) and their inverses (blow-downs at a point).

Therefore we can classify a singularity by classifying the sequence of
exceptional curves resulted from the blow-ups. To do so, we analyze them
using the idea of ”intersection numbers.” And we can define them s.t.
they agree with our intuition of intersections of curves (Riemann surfaces).
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Motivations and Background

On the other hand, we should only be concerned with the minimal
resolution, which is a resolution where the blow-up steps do not produce
unnecessary (contractible) exceptional curves.
.
Theorem (from Castelnuovo’s criterion)
..
......All (−1)-curves can be contracted.

Here (−1)-curves refers to curves that are isomorphic to P1 with self
intersection number −1.
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. . . . . .

Motivations and Background

The canonical classes of a surface holds important status, so we would like
to leave them alone when resolving singularities

.
Du Val Singularities
..

......

A point x ∈ X of a normal surface is called a Du Val singularity if there
exists a minimal resolution f : Y → X contracting curves C1, . . . ,Cr to x
s.t. KYCi = 0 for all i , where KY is the canonical class of Y .

A Catch-22: classifying Du Val singularities leads us to the magical Dynkin
Diagrams, so we would like to classify Du Val singularities.

Feng Ling (UT Austin) Du Val Singularities April 29, 2014 5 / 1



. . . . . .

More Background

.
Theorem (Contracted curves of a point, SH IV(4.2.2))
..

......

Let f : Y → X be a resolution of the singularity x on a surface X , where
the inverse image of x is C1 ∪ · · · ∪Cr . Then the matrix {CiCj} is negative
definite.

.
Theorem (Adjunction Formula)
..

......

For any curve C ⊂ X, the canonical class KX of the surface and canonical
class KC of the curve satisfies

deg KC = C (C + KX )

.
Theorem (Degree Genus Formula)
..

......

For any nonsingular curve C with genus g(C ) = g, its canonical class KC
satisfies

deg KC = 2g − 2
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. . . . . .

More Background

.
Properties of Blowing Up a surface at a point
..

......

If we have the blow up X ′ of a surface X at a smooth point x ∈ C ⊂ X
where C is a curve, then σ : X ′ → X induces σ′ : C → C ′ the birational
(strict) transform of C and σ∗ : C → C ∗ the total transform of C . Below
we let L be the exceptional curve of the blow up, and we write the
multiplicity of a point x ∈ C ⊂ X as µx(C ) = k.

...1 σ∗(C ) = σ′(C ) + kL

...2 KX ′ = σ′(KX ) + L

...3 σ∗(D)L = 0 ∀D ⊂ X

...4 σ∗(D1) · σ∗(D2) = D1D2 ∀Di ⊂ X

...5 L ∼ P1 and L2 = −1
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. . . . . .

Conclusions

Thus we can conclude

C 2
i = −2 (1)

CiCj = 0 or 1 (2)

Since classifying Du Val singularities is equivalent to classifying {Ci}ri=1,
the above relation shows that it is also equivalent to classifying the
negative definite lattice Ze1 + . . .+ Zer where e2i = −2, eiej > 0, since we
have Ci ∼ ei .

Therefore Dynkin Diagrams
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. . . . . .

Results

Name Equation Group Resolution Graph

An x2 + y2 + zn+1 cyclic
(n + 1)

◦—◦ · · · ◦

Dn x2 + y2z + zn−1 binary dihedral
(n − 2)

◦—◦—◦ · · · ◦
|
◦

E6 x2 + y3 + z4
binary
tetrahedral

◦—◦—◦—◦—◦
|
◦

E7 x2 + y3 + yz3
binary
octahedral

◦—◦—◦—◦—◦—◦
|
◦

E8 x2 + y3 + z5
binary
icosahedral

◦—◦—◦—◦—◦—◦—◦
|
◦

Dynkin Diagrams vs. Du Val singularities
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And drumrolls...

Now we can classify the Du Val singularities through some simple algebraic
manipulations. First we have the following regarding resolution of
embedded curve singularities.

deg Kσ′(C) = σ′(C )(σ′(C ) + KX ′)

= (σ∗(C )− kL)(σ∗(C )− kL+ σ∗(KX ) + L)

= σ∗(C )σ∗(C )− kσ∗(C )L+ σ∗(C )σ∗(KX ) + . . .

σ∗(C )L− kσ∗(C )L− kσ∗(KX )L+ k(k − 1)L2

= C 2 − 0 + CKX + 0− 0− 0− k(k − 1)

= C (C + KX )− k(k − 1)
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Still drumrolls...

Then applying the above to full sequence of resolution of a Du Val
singularity gets us

deg KC = C (C + KX )

2g(C )− 2 = C (C + KX )−
∑
i

ki (ki − 1)

⇒ 2 + C (C + KX ) = 2g(C ) +
∑
i

ki (ki − 1) ≥ 0

⇒ C (C + KX ) ≥ 2

⇒ Ci (Ci + KY ) = C 2
i + 0 ≥ 2

⇒ C 2
i = −2

Feng Ling (UT Austin) Du Val Singularities April 29, 2014 12 / 1



. . . . . .

Drum guy’s hands are getting tired...

Last but not least, let’s apply the theorem about contracted curves to our
case. Let α = (0, . . . , 1, . . . , 1, . . . , 0)T , the vector with identity on i , j
location and 0 otherwise. Therefore

{CiCj} is negative definite

⇒ b(α, α) = αT (CiCj)α < 0

⇒ (Ci + Cj)
2 < 0

C 2
i + C 2

j + 2CiCj < 0

CiCj < 2

⇒ CiCj = 0 or 1
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